
Lightning Documentation
Release 0.1.0

Curoverse

October 20, 2015

CONTENTS

1 Getting started 3
1.1 Lightning at a Glance . 3
1.2 Importing a Genome . 5
1.3 Lightning Design Doc . 5
1.4 Installation . 7

2 Tiling Overview 9

3 Compact Genome File (CGF) Format 11

4 Lantern Specifications 13

5 Tile Library 15

6 Annotile: Annotating Tile Variants 17
6.1 Adding an Annotation Pipeline to Annotile . 17
6.2 How does Annotile Work? . 17
6.3 Storing Annotation Details . 18
6.4 Future Annotile Functionality . 18

7 Data Structures Specifications 19
7.1 Data Structures Specifications, v0.1.0 . 19
7.2 Data Structures Specifications, v0.1.1 . 29

8 Lightning API Specifications 39
8.1 Lightning v0.1.0 API Specifications . 39
8.2 Reasoning Behind the API . 55
8.3 Lightning Errors . 56
8.4 Lightning v0.1.1 API Specifications . 56
8.5 Batch Processing . 60
8.6 Versioning . 61
8.7 Paging . 61

9 Software Development Kits 63

10 Sprite 65
10.1 Sprite Annotation Database . 65

11 Indices and tables 73

i

ii

Lightning Documentation, Release 0.1.0

Contents:

CONTENTS 1

Lightning Documentation, Release 0.1.0

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

Welcome to Lightning! This documentation section is most relevant for first time users. Lightning at a Glance provides
an overview of Lighting: its uses and components. How-to guides and tutorials are expected to be placed here as the
project grows.

1.1 Lightning at a Glance

Lightning is software designed to enable fast queries and machine learning on genomic data. The genomic data we
currently focus on are human whole genomes that are aligned and are called by external software, then imported into
Lightning. From there, Lighting:

• Stores quality information

• Stores phased and unphased genomes

• Allows fast retrieval of called sequences from regions of interest

• Defines flexible queries:

– Filters by subsets of the population

– And/or by specific regions of interest

• Normalizes standard called genome files (such as VCF and gVCF), such that each variant is expressed in the
same way

• Incorporates new data fast and painlessly

• Stores annotations from ClinVar and annotation pipelines, such as CAVA

Lightning is made possible by the process of tiling, which takes advantage of the high degree of redundancy in
a population of genomes. Tiling partitions genomes into tiles: overlapping, variable-length sequences that begin
and end with unique k-mers, termed tags. Once a genome has been tiled, the sequences for each tile are stored in
a tile library. These sequences may be annotated by using Annotile. The tiled genomes are stored in Compact
Genome Format (CGF) files. Genomes stored as CGF files are loaded into Lantern, which is our in-memory
database designed to respond to queries quickly. Finally, Sprite is a web browser application for interacting with
Lightning.

Note: Stated another way, Lightning’s basic method is to consider short snippets of genomic sequences as the basic
building block of genomes. These short snippets are of variable length, but are mostly in the range of 250 base pairs
long. Splitting genomes into short segments allows for savings by only storing a single copy of redundant sequences.

Each genome is partitioned into these these short read segments. From all tiles in a population, a tile library can be
constructed. Tiles are chosen to have 24mer tags on either end that overlap with neighboring tiles. Tags are chosen
with with some uniqueness constraint on them and provide convenient anchor points to differentiate tiles from one
another.

3

Lightning Documentation, Release 0.1.0

Currently, all tags are chosen to be at least 2 edit distance away from each other. The tag set is fixed and acts as anchor
points to partition future sample genomic sequences wishing to be analyzed.

The hope is that tiles, along with information on the population used to generate them, can also be used to aid in read
placement.

Because most genomic sequences are redundant, duplicate tiles need not be stored in a population of genomic se-
quences. At each tile position, multiple tile variants are stored representing the variation in a population for that tile.
Given a partitioned genomic sequence and a tile library, a compact representation of a genome can be constructed by
storing the variant numbers contiguously.

1.1.1 Components

• Tiling

• Compact Genome Format (CGF)

• Lantern

• Tile Library

• Annotile

• Sprite

• Software development kits

• API

1.1.2 Motivation

We developed Lightning in response to the difficulty and time-consuming nature of merging VCFs, querying subsets of
a population, finding poorly sequenced regions, and similar issues. After using various ad-hoc solutions, we eventually
stepped back and committed time and effort to developing a more sensible and sustainable solution. We hope it will
be useful to the broader research community and welcome your feedback.

1.1.3 Usage

We host a Lightning instance for public whole genomes, including 502 genomes from the 1000 Genomes Project and
178 genomes from the Harvard Personal Genome Project. Here, the public can interact with Lightning using Sprite.

Todo
Decide where the public lightning instance will be

Currently, Lightning assumes it has access to an Arvados cluster. For a user to run their own instance of Lightning
on their data, they must set up an Arvados cluster and import their data into it. From there, they should follow the
instructions in Importing Genomes to add new genomes. To add new annotations, they should go to Annotile.

1.1.4 Further research

Lightning is currently in its infancy. This state means Lightning has many use cases and future directions that can be
explored, some of which are listed here.

• Implement Lightning Servers for multiple species

4 Chapter 1. Getting started

Lightning Documentation, Release 0.1.0

• Include RNA sequences in Lightning

Todo
Keep filling out list

1.1.5 Contibutors

• Abram Connelly

• Sarah (Sally) Guthrie

• Jiayong Li

• Nancy Ouyang

• Alexander (Sasha) Wait Zaranek

1.1.6 Contact

lightning@curoverse.com

Todo
Make sure this email is live

1.2 Importing a Genome

Importing a genome is difficult. We’ll probably do it using pipelines. Have one pipeline in pipeline_templates that is
run when someone uploads a genome.

We acknowledge that phenotypes or meta-information about each genome is vital for interpreting results. However,
the breadth of available phenotype databases and the number of possible pieces of information makes using Lightning
as a phenotype database infeasible. Sprite provides a preliminary phenotype database, which includes information
about whether each genome (or set of calls, also known as a callset) is a reference. Additionally, it stores whether the
phases are well known, as well as the sex and the ethnicity.

Todo
Implement a better process for importing a genome Document the process

1.3 Lightning Design Doc

Goal: Specify Lightning v0.1.0 in enough detail that it can be implemented and tested.

1.3.1 Lightning v0.1.0 Features

Features here are expected to only work for well-sequenced tile variants. Poorly sequenced tile variants/partial tile
variants should return a null value.

• Stores 1 byte of quality information for all bases (well sequenced versus poorly sequenced)

1.2. Importing a Genome 5

mailto:lightning@curoverse.com

Lightning Documentation, Release 0.1.0

• Stores human genomes assuming phasing from called genome input

• Retrieves well-sequenced subsequences from population (subsequences identified by tile position)

– Subsequences may be in the form of bases

– Subsequences may be in the form of tiles

• Allows filtering

– by population subsets (named by id)

– by regions of interest (named by tile)

– by tile variant (named by md5sum, only well-sequenced tiles)

– by combinations of the above

• Provides translation between tile positions and reference locations (GRCh37, GRCh38)

• Tiles genomes provided in GFF and gVCF formats

• Can convert tiled genomes to GFF and/or gVCF

• One pipeline is required to add a new genome

• Stores annotations from ClinVar and annotation pipelines, such as CAVA

• Retrieves annotations for one or multiple tile variants (identified by tile variant identifier)

• Retrieves tile variants with one or multiple annotations (identified by annotation identifier)

1.3.2 Lightning v0.1.0 Benchmarking Goals

• Uses up to 70 MB per human genome

• Retrieves the sequences of 50 contiguous tiles from 100 human genomes in 5 seconds

• Retrieves the 50 contiguous tiles from 100 human genomes in less than a second

• Filtering on above query with any option does not change the observable time

• Tiling genomes from GFF/gVCF takes 1 hour per genome

• Annotates the tile library for 100 human genomes in 2 hours

• Filtering on annotations or tile variants for tile library of 100 genomes takes less than 1 second

1.3.3 Lightning v0.1.0 Usage

Lightning v0.1.0 should be run by Curoverse and should include 178 whole genomes from the Personal Genome
Project and 502 whole genomes from the 1000 Genomes Project. The tile library should be annotated with CAVA,
ClinVar, and ExAC data. The public should be able to retrieve well-sequenced subsequences from this population,
filter on them by population subsets, by regions of interest, by tile variant, and/or by annotations.

Users should be able to upload whole genomes, with the understanding that this Lightning instance is public. These
newly added genomes should be added to the tile library, new sequences should be annotated with CAVA, ClinVar,
and ExAC annotations, and these genomes should be added to those we can filter on.

1.3.4 Lightning v0.1.0 API

See Lightning v0.1.0 API Specifications for API details.

6 Chapter 1. Getting started

Lightning Documentation, Release 0.1.0

1.3.5 Future Versions Lightning Features

• Support partial tile variants for features detailed in v0.1.0

• Stores unphased and phased human genomes, including phase groups for features detailed in v0.1.0

• Provides translation between tiles and alternate reference locations

• Compare multiple genomes with each other

1.3.6 Future Versions Lightning Usage

Users should set up an Arvados cluster. From there, they should be able to run Sprite, which will allow them to import
their data without making it public. From there, users should be able to use Sprite identically to the v0.1.0 Lightning
instance.

1.4 Installation

Since Lightning is in development, our installation process has not yet been determined, implemented, or documented.

Todo
Create a good installation process and document it

1.4. Installation 7

Lightning Documentation, Release 0.1.0

8 Chapter 1. Getting started

CHAPTER

TWO

TILING OVERVIEW

Lightning is made possible by the process of tiling, which takes advantage of the high degree of redundancy in a
population of genomes. Tiling partitions genomes into tiles: overlapping, variable-length sequences that begin and
end with unique k-mers, termed tags. This document is an overview of our tiling implementation, along with the
crunch scripts and pipeline templates available for tiling genome inputs.

We currently accept GFF files and Complete Genomics CGI-var files as inputs.

Todo
• Document PASTA/FASTA

• Write basic instructions for writing one’s own conversion of file to a tiling (As I understand it, one must write a
conversion between that file format and PASTA, then probably add a pipeline template component).

9

Lightning Documentation, Release 0.1.0

10 Chapter 2. Tiling Overview

CHAPTER

THREE

COMPACT GENOME FILE (CGF) FORMAT

Compact Genome File Format is our preliminary format that stores tiled genomes compactly.

Todo
Document details about CGF format

11

Lightning Documentation, Release 0.1.0

12 Chapter 3. Compact Genome File (CGF) Format

CHAPTER

FOUR

LANTERN SPECIFICATIONS

Lantern is our in-memory database which stores individual tiled genome sequences. It allows us to make very fast
comparisons between genomes and filter on genome sequences. Since it is contained in random access memory
(RAM), queries are very fast.

Todo
Document Lantern and the REST APIs used to interact with Lantern

13

Lightning Documentation, Release 0.1.0

14 Chapter 4. Lantern Specifications

CHAPTER

FIVE

TILE LIBRARY

The tile library is our in-memory database that stores tile variants and their information. Tile variants are associated
with their sequence, MD5 hash digest, tile position, and other meta-information. The tile library stores this information
compactly while enabling queries on it.

Todo
Describe/specify the queries the Tile Library supports

15

Lightning Documentation, Release 0.1.0

16 Chapter 5. Tile Library

CHAPTER

SIX

ANNOTILE: ANNOTATING TILE VARIANTS

6.1 Adding an Annotation Pipeline to Annotile

Build a component for the annotate_tile_variants pipeline. This is likely to require implementing a crunch script and
creating a docker image.

6.1.1 Automated Annotation Pipelines

If the annotation pipeline you wish to port cannot use a VCF file (aligned against GRCh37) as input, you will also
need to implement a component to generate the required input for your annotation pipeline. Use the create-vcf-per-tile
component as an example.

The components you implement must output a collection with a directory named annotile_input.

Todo
After implementing annotile, document the output format requirements

6.1.2 User-added Annotations

User added annotations can be converted into a component in the annotate_tile_variants pipeline by hard-coding
annotations applying to specific tile variants. A component which does this already is linked to a Sprite user-added
annotations app. Use this component and application as an example.

Annotating genomes is an essential piece of bioinformatic workflows. Annotations are produced by many sources,
including programs and users, and we want to ensure Lightning supports the addition of all these annotations to tile
variants, can add software-produced annotations to new tile variants automatically, and can respond to queries about
which tile variants have which annotations or which annotations apply to particular tile variants.

Despite the importance of annotations in bioinformatics, Lightning is not meant to be an annotation database - it is not
meant to support complex queries on types of annotations, source of annotations, date of generation or modification,
or keywords. These types of queries and annotation storage should be done by add-ons, which can be added to Sprite
using django apps or can be added to one’s own application interacting with Lightning.

6.2 How does Annotile Work?

Lightning associates each tile variant with its variant value, which is our term for the MD5 hash digest of its
sequence. These variant values can be associated with metadata about that tile variant. Annotile is simply a
many-to-many database, which associates variant values to user-specified annotations identifiers.

17

Lightning Documentation, Release 0.1.0

Warning: Lightning v0.1.0 does not support annotating tiles with poorly sequenced regions. These require more
complex tile variant representations and are thus left to future versions.

Annotile is populated by running the pipeline template annotate_tile_variants. Each component in anno-
tate_tile_variants runs annotation software on each tile variant, producing detailed annotation information for the
annotation app and information for loading into Annotile.

For details about porting an annotation pipeline or adding user-written annotations, see Adding an Annotation Pipeline
to Annotile.

Annotile also provides querying capabilities, allowing a user to find which annotations are associated with which tile
variants and vice versa. For specific details about annotation querying, see ../api/index.

6.3 Storing Annotation Details

Sprite has a basic app for storing and visualizing specific annotations, but it is not the only option for storing and
querying annotations, since we are designing Lightning to be able to support new annotation databases. A user can
build a django app to plug into Sprite on their Lightning instance, or a user can build their own application in their
language of choice to work similarly to Sprite, then plug their annotation database into that.

6.4 Future Annotile Functionality

Future functionality is expected to focus on Annotile’s querying capabilities, and will probably include a direct query-
ing function from genomes to annotations and vice versa.

18 Chapter 6. Annotile: Annotating Tile Variants

CHAPTER

SEVEN

DATA STRUCTURES SPECIFICATIONS

Here are some data structures.

Contents:

7.1 Data Structures Specifications, v0.1.0

7.1.1 ArvadosUUID

The UUID of an Arvados object.

'<string>-<string>-<string>'

Example ArvadosUUID:

'su92l-d1hrv-1xal9oo1iyi7tzn'

7.1.2 TilePosition

A compact representation of a tile position. A string of 3 period-separated integers (in base 16). The first
integer is the tag set version integer, the second is the path number, the third is the step.

'<int>.<int>.<int>'

Version.Path.Step

Example TilePosition:

'00.2c5.00a1'

7.1.3 TilePositionRange

A compact representation of a range of tile positions. A string of 3 period-separated integers (in base
16) followed by a hyphen and another integer in base 16. The first integer is the tag set version integer,
the second is the path integer, the third is the first step integer, which is the step to start retrieving from
(inclusive and 0-indexed). The integer following the hyphen indicates the step to stop retrieving from
(exclusive and 0-indexed).

19

Lightning Documentation, Release 0.1.0

'<int>.<int>.<int>-<int>'

Version.Path.StartStep-EndStep
StartStep: inclusive, 0-indexed
EndStep: exclusive, 0-indexed

Example TilePositionRange:

'00.2c5.00a1-00b0'

7.1.4 TileVariant

A compact representation of a tile variant. A string of 3 period-separated integers (in base 16), followed
by another period and one string. The first integer is the tag set version integer, the second is the path
integer, the third is the step integer, and the fourth is the MD5 hash digest of the tile variant sequence.

'<int>.<int>.<int>.<string>'

Version.Path.Step.VariantMD5SUM

Example TileVariant:

'00.247.1bfb.c95325c08a449529143776e18561db71'

7.1.5 NotTileVariant

Only used to build TileVariantClause. When used, it indicates a selection on the specimens that do not
have that tile variant. A TileVariant (in base 16), preceded by a tilda.

'~<int>.<int>.<int>.<string>'

Version.Path.Step.VariantMD5SUM

Example NotTileVariant:

'~00.247.1bfb.c95325c08a449529143776e18561db71'

7.1.6 ClauseEntry

Used as a builder for TileVariantClause‘s. Items may be of type TileVariant or NotTileVariant. If the item
is of type TileVariant, the ClauseEntry evaluates to true if that TileVariant exists in the population. If the
item is of type NotTileVariant, the ClauseEntry evaluates to true if the TileVariant following the tilda does
not exist in the population.

<TileVariant> | <NotTileVariant>

Example ClauseEntry:

'00.247.1bfb.c95325c08a449529143776e18561db71'

7.1.7 TileVariantClause

The ‘OR’ list of SAT (Boolean Satisfiability Problem). Ensuring the validity of the clause is a task placed
on the client. A list of length 1 or more. Each item in the list is of type ClauseEntry and is checked against

20 Chapter 7. Data Structures Specifications

Lightning Documentation, Release 0.1.0

each phase independently of the other items. The TileVariantClause evaluates to true if any of the clauses
evaluate to true.

[<ClauseEntry>, <ClauseEntry>, ...]

Example TileVariantClause:

[
'00.247.1bfb.c95325c08a449529143776e18561db71',
'~00.2c5.0000.1948117b4a56e4ad73d36dce185110fd'

]

This example will evaluate to True for any genomes in the population that have tile variant
c95325c08a449529143776e18561db71 at TilePosition 00.247.1bfb on at least one of their
phases and/or do not have tile variant 1948117b4a56e4ad73d36dce185110fd at TilePosition
00.2c5.0000 on at least one of their phases.

7.1.8 TileVariantLogic

The ‘AND’ list of SAT (Boolean Satisfiability problem). Ensuring the validity of the clause is a task
placed on the client. A list of one or more TileVariantClause‘s. By default, each TileVariantClause is
evaluated against each phase independently of the other TileVariantClause‘s.

[<TileVariantClause>, <TileVariantClause>, ...]

Example TileVariantLogic:

[[
'00.247.1bfb.c95325c08a449529143776e18561db71',
'~00.2c5.0000.1948117b4a56e4ad73d36dce185110fd'

]]

This example will evaluate to True for any genomes in the population that have tile variant
c95325c08a449529143776e18561db71 at TilePosition 00.247.1bfb on at least one of their
phases and/or do not have tile variant 1948117b4a56e4ad73d36dce185110fd at TilePosition
00.2c5.0000 on at least one of their phases.

Example TileVariantLogic:

[
['00.247.1bfb.c95325c08a449529143776e18561db71'],
['~00.2c5.0000.1948117b4a56e4ad73d36dce185110fd']

]

This example will evaluate to True for any genomes in the population that have tile variant
c95325c08a449529143776e18561db71 at TilePosition 00.247.1bfb on at least one of their phases
and do not have variant 1948117b4a56e4ad73d36dce185110fd at TilePosition 00.2c5.0000 on at
least one of their phases.

7.1.9 TileVariantDetail

The metadata information associated with one well sequenced tile variant. Dictionary containing the keys:

• tile-variant: The TileVariant identifier.

• tag-length: The length of the tags.

7.1. Data Structures Specifications, v0.1.0 21

Lightning Documentation, Release 0.1.0

• start-tag: The sequence of the start tag. Must be of length 0 (if the tile is at the start of the path)
or the length specified by tag-length. Cannot have n’s.

• end-tag: The sequence of the end tag. Must be of length 0 (if the tile is at the end of the path) or
the length specified by tag-length. Cannot have n’s.

• is-start-of-path: A boolean indicating whether the tile is at the start of the path.

• is-end-of-path: A boolean indicating whether the tile is at the end of the path.

• sequence: The sequence of the tile. Cannot include n’s (since the tile variant must be well-
sequenced).

• md5sum: The md5sum of the tile sequence.

• length: The length of the tile sequence.

• number-of-positions-spanned: The number of tile positions this tile variant spans. Must
be greater or equal to 1.

• population-frequency: The percentage of the population that contains this tile variant. Each
well-sequenced phase counts as 1 entry in the population.

• population-count: The number of well-sequenced phases that contain this tile variant.

• population-total: The number of phases that contain a well sequenced tile at this tile position.
Each phase counts as 1 entry in the population.

{
'tag-length': <int>,
'start-tag': <string>,
'end-tag': <string>,
'is-start-of-path': <boolean>,
'is-end-of-path': <boolean>,
'sequence' : <string>,
'md5sum': <string>,
'length': <int>,
'number-of-positions-spanned': <int>,
'population-frequency': <float>,
'population-count': <int>,
'population-total': <int>

}

Validations for each key are as follows:

TileVariantDetail['tag-length'] >= 1
TAG_LENGTH = TileVariantDetail['tag-length']
TileVariantDetail['start-tag'] matches '^[acgt]{TAG_LENGTH}$|^$'
TileVariantDetail['end-tag'] matches '^[acgt]{TAG_LENGTH}$|^$'
TileVariantDetail['sequence'] matches '[acgt]'
TileVariantDetail['md5sum'] == MD5_hash_digest(TileVariantDetail['sequence'])
TileVariantDetail['length'] == len(TileVariantDetail['sequence'])
TileVariantDetail['number-of-positions-spanned'] >= 1
0 <= TileVariantDetail['population-frequency'] <= 1
TileVariantDetail['population-total'] >= 0

Example TileVariantDetail:

{
'tile-variant':'00.2c5.30ae.bc952f709d7419f7e103daa2b7e469a9',
'tag-length': 24,
'start-tag': 'gccaaggagttttaaaactactga',
'end-tag': '',

22 Chapter 7. Data Structures Specifications

Lightning Documentation, Release 0.1.0

'is-start-of-path': False,
'is-end-of-path': True,
'sequence' : 'gccaaggagttttaaaactactgatgcccacctcccacacccaaaagtctgattaattgatctagggtatggcctgagcttcaagagtttttaaagcatccaggtgattacaatgtgtagtgaagtttgagagccactgcacaacattaataattgttgggagaaagactgtggctttagctagggagagctgtccagaagatctgaatgtcaggagagagactagtgagagatttggaaaccatcaacatattgatggtaactgaagccacagaagtggacaacactgccttaggagaagatgccaaataacaagagagtagatacaaagacattttgacataacaaagtatggttacagaaatattttcaggtggaaaggaagttgaaggga',
'md5sum': 'bc952f709d7419f7e103daa2b7e469a9',
'length': 394,
'number-of-positions-spanned': 1,
'population-frequency': 0.5,
'population-count': 150,
'population-total': 300

}

7.1.10 Assembly

A description of an assembly (JSON-formatted). Keys:

• assembly-name: the assembly name (string)

• assembly-pdh: the portable data hash referencing the collection of FASTA files for this assembly
(string)

{
'assembly-name': <string>,
'assembly-pdh': <string>,

}

Example Assembly:

{
'assembly-name': 'hg19',
'assembly-pdh': 'dad94936d4144f5e0a289244d8be93e9+5735'

}

7.1.11 Locus

A description of an assembly locus (JSON-formatted). Keys:

• assembly-name: the assembly name (string)

• assembly-pdh: the portable data hash referencing the collection of FASTA files for this assembly
(string)

• chromosome-name: the chromosome name (string)

• indexing: Indicates the indexing of start-position and end-position. (hard-coded to
0).

• start-position: start position; the inclusive beginning of the loci range. Must be greater than
0 and less than end-position. Inclusive. (Integer)

• end-position: end position; the exclusive end of the loci range. Must be greater than
start-position and less than or equal to the length of the chromosome in the specified as-
sembly.

{
'assembly-name': <string>,
'assembly-pdh': <string>,
'chromosome-name': <string>,
'indexing': 0,

7.1. Data Structures Specifications, v0.1.0 23

Lightning Documentation, Release 0.1.0

'start-position': <int>,
'end-position': <int>

}

Example Locus:

{
'assembly-name': 'hg19',
'assembly-pdh': 'dad94936d4144f5e0a289244d8be93e9+5735',
'chromosome-name': '13',
'indexing': 0,
'start-position': 32199976,
'end-position': 32200225

}

7.1.12 CMPFunction

List of supported comparison functions.

ENUM('eq', 'lt', 'lte', 'gt', 'gte')

Example CMPFunction:

'eq'

7.1.13 CMPTuple

Representation of an integer comparison - used for filtering queries. Also includes a range comparison.
For the range comparison, the first integer is the inclusive beginning of the range, the second int is the
exclusive end of the range.

(<CMP-fn>, <float>)
OR
('range', <float>, <float>)

Example CMPFunction:

('lt', 5)

7.1.14 VCF Data Structures Specifications

gVCFBlock

Genotype quality ranges used for banding. List of integers (length greater than or equal to 2). Each pair
of integers creates a minGQ (inclusive) and maxGQ (exclusive) pair for a gVCFBlock. Must be strictly
increasing, the first entry must be 0, and the last entry must be 2147483647 (the largest unsigned integer
representable in 32 bits).

[0, <int>, ..., 2147483647]

Example gVCFBlock:

[0, 2147483647]

24 Chapter 7. Data Structures Specifications

Lightning Documentation, Release 0.1.0

gVCFMetaData

Representation of a gVCF Header. JSON-formatted with keys:

• fileformat, whose value indicates the format of the VCFLine’s returned by the Lightning server

• fileDate, the current date, format (YYYYMMDD)

• source, the Lightning server producing the VCF MetaData

• assembly, Assembly data type containing the location of the reference FASTA file used to generate
the VCF lines.

• info, used to indicate the end of a VCFLine.

• format, for genotype fields

• alt, used to refer to non-reference alternate alleles.

• [optional] gvcfblock, for information about splitting gVCF blocks

{
'fileformat':'VCFc4.2',
'fileDate':<int>,
'source':'Lightningv0.1.0',
'assembly':<Assembly>,
'info': [
{
'ID': 'END',
'Number':1,
'Type':Integer,
'Description':'Stop position of the interval'

}
],
'format': [

{
'ID': 'GT',
'Number':1,
'Type':'String',
'Description':'Genotype'

}
],
'alt': [

{
'ID': 'NOT_REF',
'Description':'Represents any possible alternative allele at this location'

}
],
'gvcfblock': gVCFBlock_

}

Example gVCFMetaData:

{
'fileformat':'VCFc4.2',
'fileDate':20150928,
'source':'Lightningv0.1.0',
'assembly':'dad94936d4144f5e0a289244d8be93e9+5735/hg19',
'info': [
{
'ID': 'END',
'Number':1,

7.1. Data Structures Specifications, v0.1.0 25

Lightning Documentation, Release 0.1.0

'Type':Integer,
'Description':'Stop position of the interval'

}
],
'format': [

{
'ID': 'GT',
'Number':1,
'Type':'String',
'Description':'Genotype'

}
],
'alt': [

{
'ID': 'NOT_REF',
'Description':'Represents any possible alternative allele at this location'

}
],
'gvcfblock': [0, 2147483647]

}

VCFMetaData

Representation of a VCF Header. JSON-formatted with keys:

• fileformat, whose value indicates the format of the VCFLine’s returned by the Lightning server

• fileDate, the current date, format (YYYYMMDD)

• source, the Lightning server producing the VCF MetaData

• assembly, Assembly data type containing the location of the reference FASTA file used to generate
the VCF lines.

• format, for genotype fields

{
'fileformat':'VCFc4.2',
'fileDate':<int>,
'source':'Lightningv0.1.0',
'assembly':<Assembly>,
'format': [

{
'ID': 'GT',
'Number':1,
'Type':'String',
'Description':'Genotype'

}
]

}

Example VCFMetaData:

{
'fileformat':'VCFc4.2',
'fileDate':20150928,
'source':'Lightningv0.1.0',
'assembly':'dad94936d4144f5e0a289244d8be93e9+5735/hg19',
'format': [

26 Chapter 7. Data Structures Specifications

Lightning Documentation, Release 0.1.0

{
'ID': 'GT',
'Number':1,
'Type':'String',
'Description':'Genotype'

}
]

}

VCFSampleFormatData

JSON-formatted format field format for a VCF or gVCF file. Used for Genotype fields. Keys:

• sample-name, the name of the sample, normally defined by the column header

• GT, the genotype of the sample

{
'sample-name': <string>,
'GT':<string>

}

Example VCFSampleFormatData:

{'sample-name':'human1-illumina', 'GT':'0/0'}

VCFLine

Representation of VCF line. Keys:

• chrom: Chromosome. An identifi er from the reference genome or an angle-bracketed ID String
(<ID>) pointing to a contig in the assembly file (the file pointed to by assembly in VCFMetaData).
The colon symbol (:) must be absent from all chromosome names to avoid parsing errors when
dealing with breakends. (String, no white-space permitted).

• pos: Position. The reference position, 1-indexed. Telomeres are indicated by using positions 0 or
N+1, where N is the length of the corresponding chromosome or contig. (Integer).

• ref: Reference base(s). Each base must be one of A,C,G,T,N (case insensitive). Multiple bases are
permitted. The value matching the pos key refers to the position of the first base in this string. For
simple insertions and deletions in which either the ref or one of the alt alleles would otherwise be
null/empty, the ref and alt values must include the base before the event (which must be reflected
in the pos fi eld), unless the event occurs at position 1 on the contig in which case it must include the
base after the event; this padding base is not required (although it is permitted) for variations such
as complex substitutions or other events where all alleles have at least one base represented in their
strings. If any of the alt alleles is a symbolic allele (an angle-bracketed ID String <ID>), then the
padding base is required and pos denotes the coordinate of the base preceding the polymorphism.
(String)

• alt: Alternate base(s). List of alternate non-reference alleles called on at least one of the samples.
Options are strings made up of the bases A,C,G,T,N,*, (case insensitive) or an angle-bracketed ID
String (<ID>) or a breakend replacement string as described in the VCFv4.2 section on breakends.
The * allele is reserved to indicate that the allele is missing due to a upstream deletion. If there are
no alternative alleles, the list should be empty. (String; no whitespace, commas, or angle-brackets
are permitted in the ID String itself).

7.1. Data Structures Specifications, v0.1.0 27

Lightning Documentation, Release 0.1.0

• filter: Filter status. A list of length 1 with value PASS if this position has passed all filters (if a
call is made at this position). Otherwise, if the site has not passed all filters, a list of codes for filters
that fail. [q10, s50] might indicate that at this site the quality is below 10 and the number of samples
with data is below 50% of the total number of samples. 0 is reserved and should not be used as a fi
lter string. If fi lters have not been applied, then the list should be empty. (List of strings with no
white-space or semi-colons permitted).

• format: Genotype information (JSON-formatted). Key is ‘GT’. Values are a list of strings with no
white-space, semi-colons, commas or equals-signs.

{
'chrom':<string>,
'pos':<int>,
'ref':<string>,
'alt':[<string>, ...],
'filter':[<string>, ...],
'format': [VCFSampleFormatData_, ...]

}

Example VCFLine:

{
'chrom':'13',
'pos':32200123,
'ref':T,
'alt':['A'],
'filter':[],
'format': [

{'sample-name':'human1-illumina', 'GT':'0/1'}
]

}

gVCFLine

Representation of gVCF line. Keys are the same as VCFLine with one additional key:

• info: Additional information (dictionary, optional) to indicate when a gVCF block ends. Only 1
valid key exists in this version: “END”. Values are a list of integers. The list must be of length 1.

{
'chrom':<string>,
'pos':<int>,
'ref':<string>,
'alt':[<string>, ...],
'filter':[<string>, ...],
'format': [VCFSampleFormatData_, ...],
'info':{"END":[<int>]}

}

Example gVCFLine:

{
'chrom':'13',
'pos':32199977,
'ref':G,
'alt':['<NON_REF>'],
'filter':[],
'format': [

28 Chapter 7. Data Structures Specifications

Lightning Documentation, Release 0.1.0

{'sample-name':'human1-illumina', 'GT':'0/0'}
],
'info':{'END':[32200122]}

}

Another Valid gVCFLine Example:

{
'chrom':'13',
'pos':32200123,
'ref':T,
'alt':['A','<NON_REF>'],
'filter':[],
'format': [

{'sample-name':'human1-illumina', 'GT':'0/1'}
]

}

7.2 Data Structures Specifications, v0.1.1

7.2.1 TilePosition

(No changes, see TilePosition.)

7.2.2 TilePositionRange

(No changes, see TilePositionRange.)

7.2.3 TileVariant

(No changes, see TileVariant.)

7.2.4 NotTileVariant

(No changes, see NotTileVariant.)

7.2.5 ClauseEntry

(No changes, see ClauseEntry.)

7.2.6 TileVariantClause

(No changes, see TileVariantClause.)

7.2.7 TileVariantLogic

(No changes, see TileVariantLogic)

7.2. Data Structures Specifications, v0.1.1 29

Lightning Documentation, Release 0.1.0

7.2.8 TileVariantDetail

Todo
Specify md5sum for poorly sequenced tiles Different frequencies for more information - how many are
well sequenced? How many are there, regardless of sequencing? Etc

The metadata information associated with one tile variant. Dictionary containing the keys:

• tag-length: The length of the tags.

• start-tag: The sequence of the start tag. Must be of length 0 (if the tile is at the start of the path)
or the length specified by tag-length. Cannot have n’s.

• end-tag: The sequence of the end tag. Must be of length 0 (if the tile is at the end of the path) or
the length specified by tag-length. Cannot have n’s.

• is-start-of-path: A boolean indicating whether the tile is at the start of the path.

• is-end-of-path: A boolean indicating whether the tile is at the end of the path.

• sequence: The sequence of the tile. May include n’s.

• md5sum: TODO.

• length: The length of the tile sequence.

• number-of-positions-spanned: The number of tile positions this tile variant spans. Must
be greater or equal to 1.

• population-frequency: The percentage of the population that contains this tile variant. Each
phase counts as 1 entry in the population.

• population-total: The number of phases that contain a tile at this tile position. Each phase
counts as 1 entry in the population.

{
'tag-length': <int>,
'start-tag': <string>,
'end-tag': <string>,
'is-start-of-path': <boolean>,
'is-end-of-path': <boolean>,
'sequence' : <string>,
'md5sum': <string>,
'length': <int>,
'number-of-positions-spanned': <int>,
'population-frequency': <float>,
'population-total': <int>

}

Validations for each key are as follows:

TileVariantDetail['tag-length'] >= 1
TAG_LENGTH = TileVariantDetail['tag-length']
TileVariantDetail['start-tag'] matches '^[acgt]{TAG_LENGTH}$|^$'
TileVariantDetail['end-tag'] matches '^[acgt]{TAG_LENGTH}$|^$'
TileVariantDetail['sequence'] matches '[acgtn]'
TileVariantDetail['md5sum'] == MD5_hash_digest(TileVariantDetail['sequence'])
TileVariantDetail['length'] == len(TileVariantDetail['sequence'])
TileVariantDetail['number-of-positions-spanned'] >= 1
0 <= TileVariantDetail['population-frequency'] <= 1
TileVariantDetail['population-total'] >= 0

30 Chapter 7. Data Structures Specifications

Lightning Documentation, Release 0.1.0

7.2.9 Locus

(No changes, see Locus)

7.2.10 CMPTuple

(No changes, see CMPTuple)

7.2.11 CMPFunction

(No changes, see CMPFunction)

7.2.12 VCF Data Structures Specifications

VCFInfoField

JSON-formatted information field format for a VCF or gVCF file. Keys that are not defined here may be
included. Required keys are:

• ‘ID’, the name of the info field.

• ‘Number’, indicates the number of values that can be included with the INFO field. If the field has
one value per alternate allele, the value should be ‘A’. If the field has one value for each possible
allele (including the reference’), the value should be ‘R’. If the field has one value for each possi-
ble genotype, the value should be ‘G’. If the number of possible values varies, is unknown, or is
unbounded, the value should be ‘.’.

• ‘Type’, options are ‘Integer’, ‘Float’, ‘Flag’, ‘Character’, and ‘String’.

• ‘Description’, the description of the info field.

• [optional] ‘Source’

• [optional] ‘Version’

If the ‘Type’ is equal to ‘Flag’, the INFO field does not contain a Value entry and the number should be 0.

{
'ID': <string>,
'Number':<int>|'A'|'R'|'G'|'.',
'Type':<string>,
'Description':<string>,
'Source':<string>,
'Version':<string>

}

VCFFilterField

JSON-formatted filter field format for a VCF or gVCF file. Keys that are not defined here may be included.
Required keys are ‘ID’ and ‘Description’.

{
'ID': <string>,
'Description':<string>

}

7.2. Data Structures Specifications, v0.1.1 31

Lightning Documentation, Release 0.1.0

VCFFormatField

JSON-formatted format field format for a VCF or gVCF file. Used for Genotype fields. Keys that are not
defined here may be included. Required keys are:

• ‘ID’

• ‘Number’, indicates the number of values that can be included with the INFO field. If the field has
one value per alternate allele, the value should be ‘A’. If the field has one value for each possible
allele (including the reference’), the value should be ‘R’. If the field has one value for each possi-
ble genotype, the value should be ‘G’. If the number of possible values varies, is unknown, or is
unbounded, the value should be ‘.’.

• ‘Type’, options are ‘Integer’, ‘Float’, ‘Character’, and ‘String’

• ‘Description’

{
'ID': <string>,
'Number':<int>|'A'|'R'|'G'|'.',
'Type':<string>,
'Description':<string>

}

VCFAlternativeAlleleField

JSON-formatted alternative allele field format for a VCF or gVCF file. Used to build symbols for alternate
alleles (used for imprecise structural variants). Keys that are not defined here may be included. Required
keys are ‘ID’ and ‘Description’. The ID field indicates the type of structural variant and can be a colon-
separated list of types and subtypes. The ID values are case sensitive and may not contain whitespace or
angle brackets. The first level type must be one of the following:

• DEL, deletion relative to the reference

• INS, insertion of novel sequence relative to the reference

• DUP, region of elevated copy number relative to the reference

• INV, inversion of reference sequence

• CNV, copy number variable region (may be both deletion and duplication; should not be used when
a more specific category may be applied)

Reserved subtypes include:

• DUP:TANDEM, tandem duplication

• DEL:ME, deletion of a mobile element relative to the reference

• INS:ME, insertion of a mobile element relative to the reference

{
'ID': <string>,
'Description':<string>

}

VCFContigField

JSON-formatted contig field format for a VCF or gVCF file. Keys that are not defined here may be
included. Required keys are ‘ID’ and ‘Description’, and ‘URL’. ‘URL’ points to the location of the

32 Chapter 7. Data Structures Specifications

Lightning Documentation, Release 0.1.0

contig.

{
'ID': <string>,
'Description':<string>,
'URL':<string>

}

VCFSampleField

JSON-formatted sample field format for a VCF or gVCF file. Used to define sample to genome mappings.
This is the only info given by the VCFv4.2 specifications. I believe the length of ‘Genomes’, ‘Mixture’,
and ‘Description’ must be the same.

{
'ID': <string>,
'Genomes':[<string>, ...],
'Mixture':[<string>, ...],
'Description':[<string>, ...]

}

VCFMetaData

Representation of a VCF Header. JSON-formatted with keys:

• fileformat, whose value indicates the format of the VCFLine’s returned by the Lightning server

• fileDate, the current date, format (YYYYMMDD)

• source, the Lightning server producing the VCF MetaData

• reference, the location of the reference fasta file used to generate the VCFLines

• assembly, same as reference

• [optional] info, for information field formats

• [optional] filter, for filters that have been applied to the data

• [optional] format, for genotype fields

• [optional] alt, for symbolizing imprecise structural variants

• [optional] contig, for pointing to sequence contigs

• [optional] sample, for defining sample to genome mappings

• [optional] pedigree, for defining relationships between genomes. Can be a list of name:genome
or a url pointing to a pedigree database

{
'fileformat':<string>,
'fileDate':<int>,
'source':<string>,
'reference':<string>,
'assembly':<string>,
'info': [VCFInfoField_, ...],
'filter': [VCFFilterField_, ...],
'format': [VCFFormatField_, ...],
'alt': [VCFAlternativeAlleleField_, ...],
'contig': [VCFContigField_, ...],

7.2. Data Structures Specifications, v0.1.1 33

Lightning Documentation, Release 0.1.0

'sample': [VCFSampleField_, ...],
'pedigree': [{<string>:<string>}, ...] OR <string>

}

Example:

{
'fileformat':'VCFv4.2',
'fileDate':20150921,
'source':'Lightningv0.1.0',
'reference':'1adbd1bd00358fe6ff2303ec8f3169ce+83454',
'assembly':'1adbd1bd00358fe6ff2303ec8f3169ce+83454'

}

VCFSampleFormatData

JSON-formatted format field entry for a VCF or gVCF line. Used for Genotype fields of specific samples
(identified by the sample-name key below). Further keys are the values associated with the ‘ID’ of
VCFFormatField‘s returned by VCFMetaData [’format’]. Values are a list of strings with no white-space,
semi-colons, commas or equals-signs. Useful predefined keys include:

• GT : genotype. The values associated with this key are strings of allele values for the specified
sample in sample-name. The alleles are separated by / (for unphased) or | (for phased). The allele
values are 0 for the reference allele (which is in the ref field of the VCFLine), 1 for the first allele
listed in the alt field of the VCFLine, 2 for the second allele in the alt field of the VCFLine and
so on. If a call cannot be made for a sample at a given locus, . should be specified for each missing
allele in the GT field.

• PS : phase set. The values associated with this key are non-negative 32-bit integers indicating the
phase set this genotype belongs to. A phase set is a set of phased genotypes. Phased genotypes for
an individual sample that are on the same chromosome and have the same PS value are in the same
phased set. A phase set specifies multi-marker haplotypes for the phased genotypes in the set. All
phased genotypes that do not contain a PS subfield are assumed to belong to the same phased set. If
the genotype in the GT field is unphased, the corresponding PS field is ignored.

One additional key (not defined in VCFMetaData [’format’]) is required:

• sample-name, the name of the sample, which is normally defined by the column header in a VCF
file.

{
'sample-name': <string>,
<string>:[<string>, ...],
<string>:[<string>, ...],
...

}

VCFLine

Representation of VCF line. The info field maps the IDs from VCFInfoField‘s defined in VCFMetaData.
Required keys:

• chrom: Chromosome. An identifi er from the reference genome or an angle-bracketed ID String
(<ID>) pointing to a contig in the assembly file (the file pointed to by assembly in VCFMetaData).
The colon symbol (:) must be absent from all chromosome names to avoid parsing errors when
dealing with breakends. (String, no white-space permitted).

34 Chapter 7. Data Structures Specifications

Lightning Documentation, Release 0.1.0

• pos: Position. The reference position, 1-indexed. Telomeres are indicated by using positions 0 or
N+1, where N is the length of the corresponding chromosome or contig. (Integer).

• id: Identifier. List of unique identifi ers if available. If there is no identifi er available, then the list
is empty. (List of strings, no white-space or semi-colons permitted

• ref: Reference base(s). Each base must be one of A,C,G,T,N (case insensitive). Multiple bases are
permitted. The value matching the pos key refers to the position of the first base in this string. For
simple insertions and deletions in which either the ref or one of the alt alleles would otherwise be
null/empty, the ref and alt values must include the base before the event (which must be reflected
in the pos fi eld), unless the event occurs at position 1 on the contig in which case it must include the
base after the event; this padding base is not required (although it is permitted) for variations such
as complex substitutions or other events where all alleles have at least one base represented in their
strings. If any of the alt alleles is a symbolic allele (an angle-bracketed ID String <ID>), then the
padding base is required and pos denotes the coordinate of the base preceding the polymorphism.
(String)

• alt: Alternate base(s). List of alternate non-reference alleles called on at least one of the samples.
Options are strings made up of the bases A,C,G,T,N,*, (case insensitive) or an angle-bracketed ID
String (<ID>) or a breakend replacement string as described in the VCFv4.2 section on breakends.
The * allele is reserved to indicate that the allele is missing due to a upstream deletion. If there are
no alternative alleles, the list should be empty. (String; no whitespace, commas, or angle-brackets
are permitted in the ID String itself).

• qual: Quality. Phred-scaled quality score for the assertion made in ALT. -10*log10(prob[call
in alt is wrong]). If alt is empty, then this is -10*log10(prob[variant]), otherwise, this is -
10*log10(prob[no variant]). If this is unknown, return None.

• filter: Filter status. A list of length 1 with value PASS if this position has passed all filters (if a
call is made at this position). Otherwise, if the site has not passed all filters, a list of codes for filters
that fail. [q10, s50] might indicate that at this site the quality is below 10 and the number of samples
with data is below 50% of the total number of samples. 0 is reserved and should not be used as a fi
lter string. If fi lters have not been applied, then the list should be empty. (List of strings with no
white-space or semi-colons permitted)

• info: Additional information (JSON-formatted). Keys are the values associated with the ‘ID’ key
in the VCFInfoField‘s of VCFMetaData_[’info’]. Values are a list of strings with no white-space,
semi-colons, commas or equals-signs. List may be empty for Flag info keys.

• [optional] format: Genotype information (List of VCFSampleFormatData). Given if ‘format’ is
defined in VCFMetaData.

{
'chrom':<string>,
'pos':<int>,
'id':[<string>, ...],
'ref':<string>,
'alt':[<string>, ...],
'qual':<float>|None,
'filter':[<string>, ...],
'info': {
<string>:[<string>, ...],
<string>:[<string>, ...],
...

},
'format': [VCFSampleFormatData, ...]

}

7.2. Data Structures Specifications, v0.1.1 35

Lightning Documentation, Release 0.1.0

gVCFBlock

Genotype quality ranges used for banding. List of integers (length greater than or equal to 2). Each pair
of integers creates a minGQ (inclusive) and maxGQ (exclusive) pair for a gVCFBlock. Must be strictly
increasing, the first entry must be 0, and the last entry must be 2147483647 (the largest unsigned integer
representable in 32 bits).

[0, <int>, ..., 2147483647]

gVCFMetaData

Representation of a gVCF Header. JSON-formatted with keys:

• fileformat, whose value indicates the format of the VCFLine’s returned by the Lightning server

• fileDate, the current date, format (YYYYMMDD)

• source, the Lightning server producing the VCF MetaData

• reference, the location of the reference fasta file used to generate the VCFLines

• assembly, same as reference

• alt, for symbolizing imprecise structural variants. Includes ‘NOT_REF’ for the non-reference
alternate allele.

• info, for information field formats. Includes ‘END’, which is used to indicate the end of a
VCFLine.

• [optional] gvcfblock, for information about splitting gVCF blocks

• [optional] filter, for filters that have been applied to the data

• [optional] format, for genotype fields

• [optional] contig, for pointing to sequence contigs

• [optional] sample, for defining sample to genome mappings

• [optional] pedigree, for defining relationships between genomes. Can be a list of name:genome
or a url pointing to a pedigree database

{
'fileformat':<string>,
'fileDate':<int>,
'source':<string>,
'reference':<string>,
'assembly':<string>,
'info': [

{
'ID': 'END',
'Number':1,
'Type':Integer,
'Description':'Stop position of the interval'

},
VCFInfoField_,
...

],
'alt': [

{
'ID': 'NOT_REF',
'Description':'Represents any possible alternative allele at this location'

36 Chapter 7. Data Structures Specifications

Lightning Documentation, Release 0.1.0

},
VCFAlternativeAlleleField_,
...

],
'gvcfblock': gVCFBlock_,'
'filter': [VCFFilterField_, ...],
'format': [VCFFormatField_, ...],
'contig': [VCFContigField_, ...],
'sample': [VCFSampleField_, ...],
'pedigree': [{<string>:<string>}, ...] OR <string>

}

7.2. Data Structures Specifications, v0.1.1 37

Lightning Documentation, Release 0.1.0

38 Chapter 7. Data Structures Specifications

CHAPTER

EIGHT

LIGHTNING API SPECIFICATIONS

We highly recommend reading the appropriate version of Data Structures Specifications before reading the API spec-
ifications you are interested in.

Components for each API specification:

• Server Namespace

• API Calls

• API Examples

Contents:

8.1 Lightning v0.1.0 API Specifications

We highly recommend reading Data Structures Specifications, v0.1.0 before diving into this API. These API only
support well-sequenced tile variants. Note that RESTful API GET queries do not allow request data.

8.1.1 Lightning Server Namespace

/status : returns the API version running on the server
/tile-library

/tag-sets : returns the tag set version information for all versions
supported by this Lighting server instance.

/{tag-set-identifier} : given the tag set version identifier, returns
information about that tag set.

/paths : given the tag set version integer, returns the paths in that
tag set.

/{path-int} : given the tag set version identifier and the path integer,
returns information about that path.

/tile-positions : given the tag set version identifier, returns the tile
positions in that tag set.

/{tile-position-id} : given the tag set version identifier and tile
position identifier, returns information about
that tile position.

/locus : given the tag set version identifier, tile position identifier,
and optional query parameters containing assembly information,
returns locus information about the tile position.

/tile-variants : given a tag set version identifier, returns the tile
variants in that tag set in this Lightning server instance.

/{tile-variant-id} : given the tag set version identifier and tile variant
identifier, returns details about the tile variant.

39

Lightning Documentation, Release 0.1.0

/locus : given the tag set version identifier, tile variant identifier,
and optional query parameters containing assembly information,
returns locus information about the tile variant.

/subsequence: given the tag set version identifier, tile variant
identifier, and query parameters containing locus
information, returns the subsequence of the tile variant

/annotations: given the tag set version identifier and tile variant
identifier, returns the annotation identifiers applying
to that tile variant.

/annotations : returns a list of annotation identifiers loaded into the Lightning
instance.

/{annotation-id} : given an annotation id, returns the tile variants associated
with that annotation.

/callsets : returns a list of all genome names, termed callsets, loaded into this
Lightning server instance.

/{callset-name} : given the callset name, returns details about the callset.
/gvcf : given the callset name and locus query parameters, returns a list

of gVCF lines.
/vcf : given the callset name and locus query parameters, returns a list of

VCF lines.
/tile-variants : given the callset name and tile position query parameters,

returns the tile variants the callset has at the given tile
position.

/assemblies : returns the available assemblies
/{assembly-id} : returns the details about the assembly, including a list of

loaded loci (valid locations) on the Lightning server instance.
/searches : returns a list of searches that have been performed

/{search-id} : returns the specific search and the answer of the search

8.1.2 GET /status

Request used to obtain the status of the Lightning server instance, which currently only includes the API
version the server is running. Does not require any query parameters.

Response body:

{
'api-version': <int>.<int>.<int>

}

Example Query:

curl -H "Accept:application/json" http://localhost:8888/status

Example response:

{ 'api-version' : 0.1.0 }

8.1.3 GET /tile-library/tag-sets

Request used to get the available tag sets on this Lightning instance. Does not require any query param-
eters. Returns a list of tag set unique identifiers (portable data hashes of the collection containing the tag
set). This collection contains information about the tag set and the path dividers.

Response body:

40 Chapter 8. Lightning API Specifications

Lightning Documentation, Release 0.1.0

[<string>, ...]

Example Query:

curl -H "Accept:application/json" http://localhost:8888/tile-library/tag-sets

Example response:

['d87075c41962489cb9ce7d63da1d7841', '047ae54fba97385716acd2c552fae763']

8.1.4 GET /tile-library/tag-sets/{tag-set-identifier}

Request used to get information about the given tag set identifier. Does not require any query parameters.
Provides the short integer identifier used by this server to represent the tag set (keyed by ‘tag-set-integer’).

Response body:

{
'tag-set-identifier' : <string>,
'tag-set-integer': <int> (base 16)

}

Example Query:

curl -H "Accept:application/json" http://localhost:8888/tile-library/tag-sets/d87075c41962489cb9ce7d63da1d7841

Example response:

{
'tag-set-identifier' : 'd87075c41962489cb9ce7d63da1d7841',
'tag-set-integer' : 00

}

8.1.5 GET /tile-library/tag-sets/{tag-set-identifier}/paths

Request used to get the available paths for a specific tag set on this Lightning server instance. Tag set is
specified using the tag set identifier in the uri. Does not require any query parameters. Returns a list of
path integers (in base 16).

Response body:

[<int>, ...]

Example Query:

curl -H "Accept:application/json" http://localhost:8888/tile-library/tag-sets/d87075c41962489cb9ce7d63da1d7841/paths

Example response for a BRCA Lightning Instance (a lightning server with 2 paths defined - 247 and
2c5):

[247, 2c5]

8.1.6 GET /tile-library/tag-sets/{tag-set-identifier}/paths/{path-int}

Request used to get information about a specific path for a specific tag set on this Lightning server in-
stance. Tag set is specified using the tag set identifier in the uri. The path is identified using the path

8.1. Lightning v0.1.0 API Specifications 41

Lightning Documentation, Release 0.1.0

integer, written in base 16 in the uri. Does not require any query parameters. Returns a dictionary with
path information for the specified path and tag set.

The number of tile positions for this path is provided under the ‘num-positions’ key.

Response body:

{
'path' : <int> (base 16),
'num-positions' : <int> (base 10)

}

Example Query:

curl -H "Accept:application/json" http://localhost:8888/tile-library/tag-sets/d87075c41962489cb9ce7d63da1d7841/paths/2c5

Example response:

{
'path' : 2c5,
'num-positions' : 12462

}

8.1.7 GET /tile-library/tag-sets/{tag-set-identifier}/tile-positions

Request used to get the available tile positions for a specific tag set on this Lightning server instance. Tag
set is specified using the tag set identifier in the uri. Does not require any query parameters. In the future,
might support query parameters filtering on information about the tile (like its path). Returns a list of tile
position identifiers (TilePosition).

Response body:

[<TilePosition>, ...]

Example Query:

curl -H "Accept:application/json" http://localhost:8888/tile-library/tag-sets/d87075c41962489cb9ce7d63da1d7841/tile-positions

Example response for a BRCA Lightning Instance:

['00.247.0000', '00.247.0001', ..., '00.247.1bfb', '00.2c5.0000', ..., '00.2c5.30ae']

8.1.8 GET /tile-library/tag-sets/{tag-set-identifier}/tile-positions/{tile-position-id}

Request used to get information about a specific tile position for a specific tag set on this Lightning server
instance. The tag set is specified using the tag set identifier in the uri. The tile position is identified using
the TilePosition in the uri. Does not require any query parameters. Returns a dictionary with tile position
information for the specified tag set and tile position.

Response body:

{
'tile-position': <TilePosition>,
'total-tile-variants': <int>, (base 10)
'well-sequenced-tile-variants': <int>, (base 10)
'num-genomes': <int> (base 10)

}

42 Chapter 8. Lightning API Specifications

Lightning Documentation, Release 0.1.0

Example Query:

curl -H "Accept:application/json" http://localhost:8888/tile-library/tag-sets/d87075c41962489cb9ce7d63da1d7841/tile-positions/00.247.0000

Example Response:

{
'tile-position': '00.247.0000',
'total-tile-variants': 25,
'well-sequenced-tile-variants': 0,
'num-genomes': 680

}

8.1.9 GET /tile-library/tag-sets/{tag-set-identifier}/tile-positions/{tile-position-
id}/locus

Request used to get locus information about a specific tile position for a specific tag set on this Lightning
server instance. The tag set is specified using the tag set identifier in the uri. The tile position is identified
using the TilePosition in the uri. Does not require any query parameters, but an assembly identifier may
be used to get information about a specific assembly. Returns a list of Locus‘s. If no query parameters are
specified, the list returned contains the loci for all assemblies in the Lightning server instance.

GET Query Parameters:

Parameter name Type Notes
assembly-name <string> Optional
assembly-pdh <string> Optional

Response body:

[<Locus>, ...]

Example Query Parameters:

Parameter name Value
assembly-name ‘hg19’
assembly-pdh ‘dad94936d4144f5e0a289244d8be93e9+5735’

Example Query:

curl -H "Accept:application/json" http://localhost:8888/tile-library/tag-sets/d87075c41962489cb9ce7d63da1d7841/tile-positions/00.247.0000/locus?assembly-name=hg19&assembly-pdh=dad94936d4144f5e0a289244d8be93e9+5735

Example response body:

[
{

'assembly-name': 'hg19',
'assembly-pdh': 'dad94936d4144f5e0a289244d8be93e9+5735',
'chromosome-name': '13',
'indexing': 0,
'start-position': 32199976,
'end-position': 32200225

}
]

8.1. Lightning v0.1.0 API Specifications 43

Lightning Documentation, Release 0.1.0

8.1.10 GET /tile-library/tag-sets/{tag-set-identifier}/tile-variants

Request used to get the available tile variants for a specific tag set on this Lightning server instance. Tag
set is specified using the tag set identifier in the uri. Does not require any query parameters. In the future,
might support query parameters filtering on information about the tile variant (like its path). Returns a list
of tile variant identifiers (TileVariant).

Response body:

[<TileVariant>, ...]

Example Query:

curl -H "Accept:application/json" http://localhost:8888/tile-library/tag-sets/d87075c41962489cb9ce7d63da1d7841/tile-variants

Example response for a BRCA Lightning Instance:

[
'00.247.0000.830003ac103a97d8f7992e09594ac68e',
'00.247.0000.455577ff6b0d38188477ee2bfb2f0ea8',
...,
'00.247.1bfb.c95325c08a449529143776e18561db71',
'00.2c5.0000.1948117b4a56e4ad73d36dce185110fd',
...,
'00.2c5.30ae.bc952f709d7419f7e103daa2b7e469a9'

]

8.1.11 GET /tile-library/tag-sets/{tag-set-identifier}/tile-variants/{tile-variant-id}

Request used to get information about a specific tile variant for a specific tag set on this Lightning server
instance. The tag set is specified using the tag set identifier in the uri. The tile variant is identified using
the TileVariant in the uri. Does not require any query parameters. Returns details about the specified
TileVariant as a TileVariantDetail.

Response body:

<TileVariantDetail>

Example Query:

curl -H "Accept:application/json" http://localhost:8888/tile-library/tag-sets/d87075c41962489cb9ce7d63da1d7841/tile-variants/00.2c5.30ae.bc952f709d7419f7e103daa2b7e469a9

Example response:

{
'tile-variant':'00.2c5.30ae.bc952f709d7419f7e103daa2b7e469a9',
'tag-length': 24,
'start-tag': 'gccaaggagttttaaaactactga',
'end-tag': '',
'is-start-of-path': False,
'is-end-of-path': True,
'sequence' : 'gccaaggagttttaaaactactgatgcccacctcccacacccaaaagtctgattaattgatctagggtatggcctgagcttcaagagtttttaaagcatccaggtgattacaatgtgtagtgaagtttgagagccactgcacaacattaataattgttgggagaaagactgtggctttagctagggagagctgtccagaagatctgaatgtcaggagagagactagtgagagatttggaaaccatcaacatattgatggtaactgaagccacagaagtggacaacactgccttaggagaagatgccaaataacaagagagtagatacaaagacattttgacataacaaagtatggttacagaaatattttcaggtggaaaggaagttgaaggga',
'md5sum': 'bc952f709d7419f7e103daa2b7e469a9',
'length': 394,
'number-of-positions-spanned': 1,
'population-frequency': 0.5,
'population-count': 150,
'population-total': 300

}

44 Chapter 8. Lightning API Specifications

Lightning Documentation, Release 0.1.0

8.1.12 GET /tile-library/tag-sets/{tag-set-identifier}/tile-variants/{tile-variant-
id}/locus

Request used to get locus information about a specific tile variant for a specific tag set on this Lightning
server instance. The tag set is specified using the tag set identifier in the uri. The tile variant is identified
using the TileVariant in the uri. Does not require any query parameters, but an assembly identifier may be
used to get information about a specific assembly. Returns a list of Locus‘s. If no query parameters are
specified, the list returned contains the loci for all assemblies in the Lightning server instance.

GET Query Parameters:

Parameter name Type Notes
assembly-name <string> Optional
assembly-pdh <string> Optional

Response body:

[<Locus>, ...]

Example Query Parameters:

Parameter name Value
assembly-name ‘hg19’
assembly-pdh ‘dad94936d4144f5e0a289244d8be93e9+5735’

Example Query:

curl -H "Accept:application/json" http://localhost:8888/tile-library/tag-sets/d87075c41962489cb9ce7d63da1d7841/tile-variants/00.2c5.30ae.bc952f709d7419f7e103daa2b7e469a9/locus?assembly-name=hg19&assembly-pdh=dad94936d4144f5e0a289244d8be93e9+5735

Example response body:

[
{

'assembly-name': 'hg19',
'assembly-pdh': 'dad94936d4144f5e0a289244d8be93e9+5735',
'chromosome-name': '13',
'indexing': 0,
'start-position': 32199976,
'end-position': 32200225

}
]

8.1.13 GET /tile-library/tag-sets/{tag-set-identifier}/tile-variants/{tile-variant-
id}/subsequence

Request used to get a subsequence of a specific tile variant for a specific tag set on this Lightning server
instance. The tag set is specified using the tag set identifier in the uri. The tile variant is identified using
the TileVariant in the uri. Query parameters follow the Locus data structure. These query parameters are
required. The response is a dictionary with one key: sequence.

If the Locus provided touches a locus outside of the tile variant, the API should return an error.

GET Query Parameters:

8.1. Lightning v0.1.0 API Specifications 45

Lightning Documentation, Release 0.1.0

Parameter name Type
assembly-name <string>
assembly-pdh <string>
chromosome-name <string>
indexing <int>
start-position <int>
end-position <int>

Response body:

{
'sequence': <string>

}

Example Query Parameters:

Parameter name Value
assembly-name ‘hg19’
assembly-pdh ‘dad94936d4144f5e0a289244d8be93e9+5735’
chromosome-name ‘13’
indexing 0
start-position 32199976
end-position 32199983

Example Query:

curl -H "Accept:application/json" http://localhost:8888/tile-library/tag-sets/d87075c41962489cb9ce7d63da1d7841/tile-variants/00.2c5.30ae.bc952f709d7419f7e103daa2b7e469a9/subsequence?assembly-name=hg19&assembly-pdh=dad94936d4144f5e0a289244d8be93e9+5735&chromosome-name=13&indexing=0&start-position=32199976&end-position=32199983

Example response body:

{
'sequence': 'gggtac'

}

8.1.14 GET /tile-library/tag-sets/{tag-set-identifier}/tile-variants/{tile-variant-
id}/annotations

Request used to get the annotations associated with a specific tile variant for a specific tag set on this
Lightning server instance. The tag set is specified using the tag set identifier in the uri. The tile variant is
identified using the TileVariant in the uri. Does not require any query parameters. The response is a list
of annotation identifiers. If no annotation identifiers exist that are associated with that tile variant, returns
an empty list.

Response body:

[<string>, <string>, ...]

Example Query:

curl -H "Accept:application/json" http://localhost:8888/tile-library/tag-sets/d87075c41962489cb9ce7d63da1d7841/tile-variants/00.2c5.30ae.bc952f709d7419f7e103daa2b7e469a9/annotations

Example response body:

['annotation1', 'annotation3']

46 Chapter 8. Lightning API Specifications

Lightning Documentation, Release 0.1.0

8.1.15 GET /annotiles

Request used to get all the annotations loaded into this Lightning server instance. Does not require any
query parameters.

Example Query:

curl -H "Accept:application/json" http://localhost:8888/annotiles

Response body:

['annotation0', 'annotation1', 'annotation2', 'annotation3']

8.1.16 GET /annotiles/{annotation-id}

Request used to determine which tile variants (TileVariant) are associated with a particular annotation
identifier. Does not require any query parameters.

Response body:

[<TileVariant>, ...]

Example Query:

curl -H "Accept:application/json" http://localhost:8888/annotiles/annotation0

Example response body:

['00.2c5.30ae.bc952f709d7419f7e103daa2b7e469a9']

8.1.17 GET /callsets

Request used to determine which callsets (called genomes) are loaded into this Lightning server instance.
Returns a list of the names of the callsets. These names are expected to be identical to the names used in
the phenotype database the user chooses. Does not require any query parameters.

Response body:

[<string>, <string>, ...]

Example Query:

curl -H "Accept:application/json" http://localhost:8888/callsets

Example response body:

['human1-complete-genomics', 'human1-illumina', 'human2', 'assembly-hg19']

8.1.18 GET /callsets/{callset-name}

Request used to find details about a specific callset. Returns dictionary containing details about the callset.
Phenotypic details may be passed by querying the phenotype database specified by the user, but this
phenotype database is not part of Lightning.

Response body:

8.1. Lightning v0.1.0 API Specifications 47

Lightning Documentation, Release 0.1.0

{
'callset-name' : <string>,
'callset-locator': <string>

}

Example Query:

curl -H "Accept:application/json" http://localhost:8888/callsets/assembly-hg19

Example response body:

Response body: {
'callset-name': 'assembly-hg19',
'callset-locator': '1cf491c1ea99543da01c5a8f6b8a6dba+228008/hg19'

}

8.1.19 GET /callsets/{callset-name}/gvcf-header

Request used to obtain a valid gVCF header. Currently should not change based on the callset name spec-
ified in the uri. Requires query parameters specifying an assembly and an optional parameter specifying
the gVCF blocks (gVCFBlock) to use. Responds with dictionary of type gVCFMetaData.

GET Query Parameters:

Parameter name Type Notes
assembly-name <string>
assembly-pdh <string>
gvcf-block <list of ints> Optional

Response body:

<gVCFMetaData>

Example Query Parameters:

Parameter name Value
assembly-name ‘hg19’
assembly-pdh ‘dad94936d4144f5e0a289244d8be93e9+5735’

Example Query:

curl -H "Accept:application/json" http://localhost:8888/callsets/human1-illumina/gvcf-header?assembly-name=hg19&assembly-pdh=dad94936d4144f5e0a289244d8be93e9+5735

Example response body:

{
'fileformat':'VCFc4.2',
'fileDate':20150928,
'source':'Lightningv0.1.0',
'assembly':'dad94936d4144f5e0a289244d8be93e9+5735/hg19',
'info': [
{
'ID': 'END',
'Number':1,
'Type':Integer,
'Description':'Stop position of the interval'

}
],
'format': [

48 Chapter 8. Lightning API Specifications

Lightning Documentation, Release 0.1.0

{
'ID': 'GT',
'Number':1,
'Type':'String',
'Description':'Genotype'

}
],
'alt': [

{
'ID': 'NOT_REF',
'Description':'Represents any possible alternative allele at this location'

}
],
'gvcfblock': [0, 2147483647]

}

8.1.20 GET /callsets/{callset-name}/gvcf

Request used to obtain a list of valid gVCF lines for specified callset in the uri. Requires query parameters
specifying a Locus to retrieve lines for. The query parameters may include an optional parameter to
specify the gVCF blocks (gVCFBlock) to use. Responds with a list of dictionaries of type gVCFLine.
These represent the gVCF lines of the specified callset.

GET Query Parameters: ::

Parameter name Type Notes
assembly-name <string>
assembly-pdh <string>
chromosome-name <string>
indexing <int>
start-position <int>
end-position <int>
gvcf-block <list of ints> Optional

Response body:

[<gVCFLine>, ...]

Example query parameters:

Parameter name Value
assembly-name ‘hg19’
assembly-pdh ‘dad94936d4144f5e0a289244d8be93e9+5735’
chromosome-name ‘13’
indexing 0
start-position 32199976
end-position 32200225

Example Query:

curl -H "Accept:application/json" http://localhost:8888/callsets/human1-illumina/gvcf?assembly-name=hg19&assembly-pdh=dad94936d4144f5e0a289244d8be93e9+5735&chromosome-name=13&indexing=0&start-position=32199976&end-position=32200225

Example response body:

[
{

'chrom':'13',
'pos':32199977,
'ref':G,

8.1. Lightning v0.1.0 API Specifications 49

Lightning Documentation, Release 0.1.0

'alt':['<NON_REF>'],
'filter':[],
'format': [

{'sample-name':'human1-illumina', 'GT':'0/0'}
],
'info':{'END':[32200122]}

},
{

'chrom':'13',
'pos':32200123,
'ref':T,
'alt':['A','<NON_REF>'],
'filter':[],
'format': [

{'sample-name':'human1-illumina', 'GT':'0/1'}
]

},
{

'chrom':'13',
'pos':32200124,
'ref':G,
'alt':['<NON_REF>'],
'filter':[],
'format': [

{'sample-name':'human1-illumina', 'GT':'0/0'}
],
'info':{'END':[32200225]}

}
]

8.1.21 GET /callsets/{callset-name}/vcf-header

Request used to obtain a valid VCF header. Currently should not change based on the callset name
specified in the uri. Requires query parameters specifying an assembly. Responds with dictionary of type
VCFMetaData.

GET Query Parameters:

Parameter name Type
assembly-name <string>
assembly-pdh <string>

Response body:

<VCFMetaData>

Example Query Parameters:

Parameter name Value
assembly-name ‘hg19’
assembly-pdh ‘dad94936d4144f5e0a289244d8be93e9+5735’

Example Query:

curl -H "Accept:application/json" http://localhost:8888/callsets/human1-illumina/vcf-header?assembly-name=hg19&assembly-pdh=dad94936d4144f5e0a289244d8be93e9+5735

Example response body:

50 Chapter 8. Lightning API Specifications

Lightning Documentation, Release 0.1.0

{
'fileformat':'VCFc4.2',
'fileDate':20150928,
'source':'Lightningv0.1.0',
'assembly':'dad94936d4144f5e0a289244d8be93e9+5735/hg19',
'format': [
{
'ID': 'GT',
'Number':1,
'Type':'String',
'Description':'Genotype'

}
]

}

8.1.22 GET /callsets/{callset-name}/vcf

Request used to obtain a list of valid VCF lines for specified callset in the uri. Requires query parameters
specifying a Locus to retrieve lines for. Responds with a list of dictionaries of type gVCFLine. These
represent the VCF lines of the specified callset.

GET Query Parameters: ::

Parameter name Type
assembly-name <string>
assembly-pdh <string>
chromosome-name <string>
indexing <int>
start-position <int>
end-position <int>

Response body:

[<VCFLine>, ...]

Example query parameters:

Parameter name Value
assembly-name ‘hg19’
assembly-pdh ‘dad94936d4144f5e0a289244d8be93e9+5735’
chromosome-name ‘13’
indexing 0
start-position 32199976
end-position 32200225

Example Query:

curl -H "Accept:application/json" http://localhost:8888/callsets/human1-illumina/gvcf?assembly-name=hg19&assembly-pdh=dad94936d4144f5e0a289244d8be93e9+5735&chromosome-name=13&indexing=0&start-position=32199976&end-position=32200225

Example response body:

[
{

'chrom':'13',
'pos':32200123,
'ref':T,
'alt':['A'],
'filter':[],
'format': [

8.1. Lightning v0.1.0 API Specifications 51

Lightning Documentation, Release 0.1.0

{'sample-name':'human1-illumina', 'GT':'0/1'}
]

}
]

8.1.23 GET /callsets/{callset-name}/tile-variants

Request used to obtain a list of tile variants for each phase for the callset specified in the uri. A list of Tile-
Position or TilePositionRange may be specified using optional query parameters. If no query parameters
are specified, all tile variants are returned. Responds with a dictionary with two keys: callset-name
and tile-variants. The value associated with tile variants is a list of lists. Each list represents a
phase and contains objects of type TileVariant. Tile variants are returned if they intersect at with the given
positions, even if they span outside the tile positions given.

GET Query Parameters: :: Parameter name Type Notes
tile-positions <TilePosition>|<TilePositionRange> Optional

Response body:

{
'callset-name':<string>,
'tile-variants': [

[<TileVariant>, ...],
[<TileVariant>, ...],
...

]
}

Example query parameters:

Parameter name Type
tile-positions ‘00.247.0000-0003’

Example Query:

curl -H "Accept:application/json" http://localhost:8888/callsets/human1-illumina/tile-variants?tile-positions=00.247.0000-0003

Example response body:

{
'callset-name':'human1-illumina',
'tile-variants': [

[
'00.247.0000.830003ac103a97d8f7992e09594ac68e',
'00.247.0001.a31fd29383d072a5ccf7027ec37df093',
'00.247.0002.a42a3e835440e21dda2cfd65162e85f0'

],
[
'00.247.0000.455577ff6b0d38188477ee2bfb2f0ea8',
'00.247.0001.30c792a4fc1f0bd88dcc10907e6f27e6'

],
]

}

52 Chapter 8. Lightning API Specifications

Lightning Documentation, Release 0.1.0

8.1.24 GET /assemblies

Request used to obtain a list of assemblies (Assembly) available in this Lightning server instance. Does
not require any query parameters.

Response body:

[<Assembly>, ...]

Example Query:

curl -H "Accept:application/json" http://localhost:8888/assemblies

Example response body:

[
{
'assembly-name': 'hg19',
'assembly-pdh': 'dad94936d4144f5e0a289244d8be93e9+5735'

},
{

'assembly-name': 'GRCh38',
'assembly-pdh': '047ae54fba97385716acd2c552fae763+5735'

}
]

8.1.25 GET /assemblies/{assembly-id}

Request used to obtain details about a specified assembly, given by the portable data hash in the uri,
available in this Lightning server instance. Does not require any query parameters. Details are returned
using a list of Locus‘s.

Response body:

[<Locus>, ...]

Example Query:

curl -H "Accept:application/json" http://localhost:8888/assemblies/dad94936d4144f5e0a289244d8be93e9+5735

Example response body:

[
{
'assembly-name': 'hg19',
'assembly-pdh': 'dad94936d4144f5e0a289244d8be93e9+5735',
'chromosome-name': '13',
'indexing': 0,
'start-position': 32199976,
'end-position': 34000000

},
{

'assembly-name': 'hg19',
'assembly-pdh': 'dad94936d4144f5e0a289244d8be93e9+5735',
'chromosome-name': '17',
'indexing': 0,
'start-position': 40899976,
'end-position': 44900000

8.1. Lightning v0.1.0 API Specifications 53

Lightning Documentation, Release 0.1.0

},
]

8.1.26 GET /searches/help

Returns the filters this Lightning server instance supports and the options available for each filter. If
the filter ‘tile-variants’ is available, options will be an empty list for that filter, since those may be
obtained by GET /tile-library/tag-sets/{tag-set-identifier}/tile-variants.
However, the key ‘tile-variants’ is included for completeness. The filter ‘callsets’ is treated identically:
options will be an empty list for that filter, the key is included for completeness, and the options for
‘callsets’ may be obtained by GET /callsets. Does not require any query parameters. Details are
returned in a dictionary with the keys matching the available filters. The values matching these keys are
the available options for those filters.

Response body:

{
<string> : [<string>, <string>, ...],
<string> : [<string>, <string>, ...],
...

}

Example Query:

curl -H "Accept:application/json" http://localhost:8888/searches/help

Example response body:

{
'tile-variants' : [],
'callsets': [],
'phasing': ['any-phase', 'all-phases']

}

8.1.27 GET /searches

Returns the searches that have been performed on this Lightning server instance. Does not require any
query parameters. Details are returned as a list of pipeline uuids (ArvadosUUID).

Response body:

[<ArvadosUUID>, ...]

Example Query:

curl -H "Accept:application/json" http://localhost:8888/searches

Example response body:

['su92l-d1hrv-lcrzu0qrs1iiu03', 'su92l-d1hrv-vg62va2y75c5wxm']

8.1.28 GET /searches/{search-id}

Returns the details about the search, given by the Arvados UUID (ArvadosUUID) in the uri, that has been
performed on this Lightning server instance. Does not require any query parameters. Details are returned
as a dictionary. The value associated with ‘response’ will be None if the pipeline is still running or failed.

54 Chapter 8. Lightning API Specifications

Lightning Documentation, Release 0.1.0

Response body:

{
'search-id': <ArvadosUUID>,
'parameters': {

<string>:[<string>],
...

},
'response': None | [<string>, ...]

}

Example Query:

curl -H "Accept:application/json" http://localhost:8888/searches/su92l-d1hrv-lcrzu0qrs1iiu03

Example response body:

{
'search-id': 'su92l-d1hrv-lcrzu0qrs1iiu03',
'filters': {

'tile-variants': [['00.247.0000.830003ac103a97d8f7992e09594ac68e']],
'phasing': ['any-phase']

},
'response': ['human1-complete-genomics', 'human1-illumina', 'assembly-hg19']

}

8.1.29 POST /searches

Creates a search with the specified parameters. The parameters should be available in the response GET
/searches/help. If the parameter ‘tile-variants’ is used, the value associated with that key should be
of type (TileVariantLogic). Returns the pipeline uuid (format ArvadosUUID) of that search. The output
of that pipeline will be a list of callsets matching the search.

Request body:

{
<string> : [<string>, <string>, ...],
...

}

Response body:

<ArvadosUUID>

Example Query:

curl -i -X POST -H "Content-Type:application/json" http://localhost:8888/searches -d '{"tile-variants": [["00.247.0000.830003ac103a97d8f7992e09594ac68e"]],"phasing": ["any-phase"]}'

Example response body:

'su92l-d1hrv-lcrzu0qrs1iiu03'

8.2 Reasoning Behind the API

API design! Here are some explanations!

Todo

8.2. Reasoning Behind the API 55

Lightning Documentation, Release 0.1.0

Document API explanations

8.3 Lightning Errors

8.3.1 UnknownAssembly

Used when user requests an assembly that is not loaded into the Lightning instance

8.4 Lightning v0.1.1 API Specifications

We highly recommend reading Data Structures Specifications, v0.1.1 before diving into this API. Note that RESTful
API GET queries do not allow request data.

8.4.1 Lightning Server Namespace

/status : returns the API version running on the server
/tile-library

/tag-sets : returns the tag set version information for all versions
supported by this Lighting server instance.

/{tag-set-identifier} : given the tag set version identifier, returns
information about that tag set.

/paths : given the tag set version integer, returns the paths in that
tag set.

/{path-int} : given the tag set version identifier and the path integer,
returns information about that path.

/tile-positions : given the tag set version identifier, returns the tile
positions in that tag set.

/{tile-position-id} : given the tag set version identifier and tile
position identifier, returns information about
that tile position.

/locus : given the tag set version identifier, tile position identifier,
and optional query parameters containing assembly information,
returns locus information about the tile position.

/tile-variants : given a tag set version identifier, returns the tile
variants in that tag set in this Lightning server instance.

/{tile-variant-id} : given the tag set version identifier and tile variant
identifier, returns details about the tile variant.

/locus : given the tag set version identifier, tile variant identifier,
and optional query parameters containing assembly information,
returns locus information about the tile variant.

/subsequence: given the tag set version identifier, tile variant
identifier, and query parameters containing locus
information, returns the subsequence of the tile variant

/annotations: given the tag set version identifier and tile variant
identifier, returns the annotation identifiers applying
to that tile variant.

/annotations : returns a list of annotation identifiers loaded into the Lightning
instance.

/{annotation-id} : given an annotation id, returns the tile variants associated
with that annotation.

/callsets : returns a list of all genome names, termed callsets, loaded into this

56 Chapter 8. Lightning API Specifications

Lightning Documentation, Release 0.1.0

Lightning server instance.
/{callset-name} : given the callset name, returns details about the callset.
/gvcf : given the callset name and locus query parameters, returns a list

of gVCF lines.
/vcf : given the callset name and locus query parameters, returns a list of

VCF lines.
/tile-variants : given the callset name and tile position query parameters,

returns the tile variants the callset has at the given tile
position.

/assemblies : returns the available assemblies
/{assembly-id} : returns the details about the assembly, including a list of

loaded loci (valid locations) on the Lightning server instance.
/searches : returns a list of searches that have been performed

/{search-id} : returns the specific search and the answer of the search

8.4.2 GET /status

Returns the status of the server, including the api-version running on the server, possibly the current load
level, etc. Does not require any query parameters.

Response body:

{
'api-version': <int>[.<int>]*,
...

}

8.4.3 GET /tile-library/tag-sets

Probably will be unchanged from v0.1.0.

8.4.4 GET /tile-library/tag-sets/{tag-set-identifier}

Probably will be unchanged from v0.1.0.

8.4.5 GET /tile-library/tag-sets/{tag-set-identifier}/paths

Probably will be unchanged from v0.1.0.

8.4.6 GET /tile-library/tag-sets/{tag-set-identifier}/paths/{path-int}

Probably will be unchanged from v0.1.0.

8.4.7 GET /tile-library/tag-sets/{tag-set-identifier}/tile-positions

Might be unchanged from v0.1.0. Might support query parameters filtering on information about the tile
(like its path).

8.4. Lightning v0.1.1 API Specifications 57

Lightning Documentation, Release 0.1.0

8.4.8 GET /tile-library/tag-sets/{tag-set-identifier}/tile-positions/{tile-position-id}

Probably will be unchanged from v0.1.0.

8.4.9 GET /tile-library/tag-sets/{tag-set-identifier}/tile-positions/{tile-position-
id}/locus

Probably will be unchanged from v0.1.0.

8.4.10 GET /tile-library/tag-sets/{tag-set-identifier}/tile-variants

Might be unchanged from v0.1.0. Might support query parameters filtering on information about the tile
variant (like its path).

8.4.11 GET /tile-library/tag-sets/{tag-set-identifier}/tile-variants/{tile-variant-id}

Specifications will probably will be unchanged from v0.1.0. But the response will change because the
data structure changes.

8.4.12 GET /tile-library/tag-sets/{tag-set-identifier}/tile-variants/{tile-variant-
id}/locus

Probably will be unchanged from v0.1.0. Will want a batch request to view multiple tile variants at a time.

8.4.13 GET /tile-library/tag-sets/{tag-set-identifier}/tile-variants/{tile-variant-
id}/subsequence

Probably will be unchanged from v0.1.0. Will want a batch request to view multiple tile variants at a time.

8.4.14 GET /tile-library/tag-sets/{tag-set-identifier}/tile-variants/{tile-variant-
id}/annotations

Probably will be unchanged from v0.1.0. Will want a batch request to view multiple tile variants at a time.

8.4.15 GET /annotiles

Probably will be unchanged from v0.1.0.

8.4.16 GET /annotiles/{annotation-id}

Probably will be unchanged from v0.1.0.

8.4.17 GET /callsets

Probably will be unchanged from v0.1.0.

58 Chapter 8. Lightning API Specifications

Lightning Documentation, Release 0.1.0

8.4.18 POST /callsets

Creates a callset (called genomes) in this Lightning server instance. Returns an Arvados UUID pointing
to the pipeline instance adding the callset. The callset will appear on the server once the pipeline finishes
successfully.

Request body:

{
'callset-name': <string>,
'callset-format': <string>,
'callset-collection-pdh': <string>

}

Response body:

<ArvadosUUID>

8.4.19 GET /callsets/{callset-name}

Probably will be unchanged from v0.1.0. Unlikely to include phenotypic query options.

8.4.20 GET /callsets/{callset-name}/gvcf-header

Functionality will probably remain the same as v0.1.0. Underlying specifications will change with data
structure.

8.4.21 GET /callsets/{callset-name}/gvcf

Functionality will probably remain the same as v0.1.0. Underlying specifications will change with data
structure. Might want to implement a batch query for multiple loci. Being able to name the locus would
also be helpful.

8.4.22 GET /callsets/{callset-name}/vcf-header

Functionality will probably remain the same as v0.1.0. Underlying specifications will change with data
structure.

8.4.23 GET /callsets/{callset-name}/vcf

Functionality will probably remain the same as v0.1.0. Underlying specifications will change with data
structure. Might want to implement a batch query for multiple loci. Being able to name the locus would
also be helpful.

8.4.24 GET /callsets/{callset-name}/tile-variants

Might be unchanged from v0.1.0. Might want to include phase group information. Will probably want to
implement a batch query for getting tile variants for multiple callsets at once.

8.4. Lightning v0.1.1 API Specifications 59

Lightning Documentation, Release 0.1.0

8.4.25 GET /assemblies

Probably will be unchanged from v0.1.0.

8.4.26 GET /assemblies/{assembly-id}

Probably will be unchanged from v0.1.0.

8.4.27 GET /searches/help

Probably will be unchanged from v0.1.0.

8.4.28 GET /searches

Probably will be unchanged from v0.1.0.

8.4.29 GET /searches/{search-id}

Will be expanded to allow searching on both callsets and tile variants.

Want to be able to find callsets with specific tile variants.

Want to be able to find tile variants with specific qualities: REGEX on sequences, start tag, and/or end tag.
Comparison on length, number of positions spanned, population frequency, population total. True/False
check on whether the tile is at the start of a path or at the end of the path.

8.4.30 POST /searches

Probably will be unchanged from v0.1.0.

8.5 Batch Processing

The API calls are excellent for one-off queries. However, many users may wish to use these calls many times for many
samples and/or over large parts of the genome. To speed up these queries and reduce load on the server, Lightning
plans to support batch processing.

Todo
Document these better

8.5.1 Filter to Find Tile Variants Matching Filters

Finds tile variants fulfilling a specified filters

• REGEX on sequence, start tag, or end tag

• Float comparison on length, the number of positions spanned, the frequency of this tile, or the
number of callsets called at this position

• True/False on whether the tile is at the start of path or at the end of the path

60 Chapter 8. Lightning API Specifications

Lightning Documentation, Release 0.1.0

8.5.2 Find Loci of Multiple Tiles at Once

Todo
Document

8.5.3 Retrieve the Library Around a Group of Loci

Returns a list of tile-positions touching given loci, a dictionary of tile-variants touching those loci with
the sequence of the tile variant, cut off if appropriate, and the tag-length. We should be able to name the
loci for convenience.

Todo
Should document the INDEL behavior. Previous documentation is at lightning-
dev4.curoverse.com/pad/p/lightning-indel-behavior

8.6 Versioning

URL Parameter Versioning: The client specifies the version as part of the URL path:

GET /v0.1.0/status HTTP/1.1
Host: lightning.curoverse.com
Accept: application/json

For more information and implementation details, reference http://www.django-rest-framework.org/api-
guide/versioning/.

8.7 Paging

Limit Offset Pagination: The client specifies the limit and offset using request query parameters

limit: indicates the maximum number of items to return. It’s not required. Default limit is 100. Maxi-
mum limit is 1000.

offset: indicates the starting position of the query in relation to the complete set of unpaginated items

For information and implementation details, reference http://www.django-rest-framework.org/api-guide/pagination/.

8.6. Versioning 61

http://www.django-rest-framework.org/api-guide/versioning/
http://www.django-rest-framework.org/api-guide/versioning/
http://www.django-rest-framework.org/api-guide/pagination/

Lightning Documentation, Release 0.1.0

62 Chapter 8. Lightning API Specifications

CHAPTER

NINE

SOFTWARE DEVELOPMENT KITS

This section is here for completeness: we currently do not have sdks available for Lightning.

63

Lightning Documentation, Release 0.1.0

64 Chapter 9. Software Development Kits

CHAPTER

TEN

SPRITE

Sprite is a django web application that provides visualizations and easy interaction with Lightning, as well as prelimi-
nary phenotype and tile variant annotation databases.

Todo
• Specify phenotype database

• Specify annotation database(s)

10.1 Sprite Annotation Database

Need to include CAVA and ClinVar annotations.

10.1.1 CAVA

CAVA depends on multiple inputs. Luckily, Arvados stores all these inputs along with the output. Possible CAVA
dependencies include the reference genome input used, the ensembl transcript database input used, the dbSNP database
file used, and the definition of impact used for the CAVA pipeline. Each tile has a VCF generated using it, which CAVA
is then run on.

This database will use the CSV output from the CAVA pipeline. This outputs a CSV file with the following columns:

65

Lightning Documentation, Release 0.1.0

Index Name Description
0 ID i.e. Variant call ID taken from the input file
1 CHROM i.e. chromosome of variant
2 POS i.e. genomic position of variant
3 REF i.e. reference allele of variant
4 ALT i.e. alternative allele of variant
5 QUAL i.e. QUAL value in the input VCF record
6 FILTER i.e. FILTER value in the input VCF record
7 TYPE i.e. value of TYPE annotation flag
8 ENST i.e. value of ENST annotation flag
9 GENE i.e. value of GENE annotation flag
10 TRINFO i.e. value of TRINFO annotation flag
11 LOC i.e. value of LOC annotation flag
12 CSN i.e. value of CSN annotation flag
13 CLASS i.e. value of CLASS annotation flag
14 SO i.e. value of SO annotation flag
15 IMPACT i.e. value of IMPACT annotation flag
16 ALTFLAG i.e. value of ALTFLAG annotation flag
17 ALTCLASS i.e. value of ALTCLASS annotation flag
18 ALTSO i.e. value of ALTSO annotation flag
19 DBSNP i.e. value of DBSNP annotation flag

The output will be saved in a database with the following columns per entry:

66 Chapter 10. Sprite

Lightning Documentation, Release 0.1.0

Type Details
of Type

Name Description

string Arvado-
sUUID

pipelineu-
uid

Pipeline UUID

string ‘,’-
separated

vcfinfo VCF info. 5 comma-separated values (ID, CHROM, POS, REF, ALT).Indices
(0-based) of CSV output of CAVA are 0,1,2,3,4.

string qual-
ity

QUAL; also VCF info but more likely to get queried on. Index (0-based) of CSV
output of CAVA is 5.

string filter FILTER; also VCF info but more likely to get queried on. Index (0-based) of CSV
output of CAVA is 6.

string type TYPE; includes SNP, INDEL, and COMPLEX. Index (0-based) of CSV output of
CAVA is 7.

string enst ENST; Ensembl transcript identifier applying to this position in the tile variant. Index
(0-based) of CSV output of CAVA is 8.

string gene GENE; Gene name - HGNC symbol. Index (0-based) of CSV output of CAVA is 9.
string ‘/’-

separated
trinfo TRINFO; Transcript info in a /-separated string including: strandedness, length of

transcript, number of exons, and length of coding DNA. Index (0-based) of CSV
output of CAVA is 10.

string loc LOC; Location of variant within the transcript, which includes exon, intron, UTR3/5
regions. Index (0-based) of CSV output of CAVA is 11.

string csn CSN; Clinical sequencing nomenclature. Index (0-based) of CSV output of CAVA is
12.

string ‘,’-
separated

class CLASS; Includes ESS, FS, SG, and NSY. Index (0-based) of CSV output of CAVA is
13.

string ‘,’-
separated

so SO; Includes stop_gained and frameshift_variant. Index (0-based) of CSV output of
CAVA is 14.

in-
te-
ger

im-
pact

IMPACT. Index (0-based) of CSV output of CAVA is 15.

string altflag ALTFLAG. Index (0-based) of CSV output of CAVA is 16.
string alt-

class
ALTCLASS. Index (0-based) of CSV output of CAVA is 17.

string altso ALTSO. Index (0-based) of CSV output of CAVA is 18.
string dbsnp DBSNP. Index (0-based) of CSV output of CAVA is 19.

10.1. Sprite Annotation Database 67

Lightning Documentation, Release 0.1.0

10.1.2 ClinVar

Type Details
of Type

Name Description

string Un-
known

acc Variant accession and versions; Keyed by CLNACC in ClinVar VCF file.

string Un-
known

clinical-
signifi-
cance

Variant Clinical Significance, 0 - Uncertain significance, 1 - not provided, 2 -
Benign, 3 - Likely benign, 4 - Likely pathogenic, 5 - Pathogenic, 6 - drug response,
7 - histocompatibility, 255 - other. Keyed by CLNSIG in ClinVar VCF file.

string Un-
known

dis-
easedb-
name

Variant disease database name. Keyed by CLNDSDB.

string Un-
known

disease-
name

Variant disease name. Keyed by CLNDBN.

string Un-
known

hgvs Variant names from HGVS. Keyed by CLNHGVS in ClinVar VCF file.

string Un-
known

review-
status

ClinVar Review Status, mult - Classified by multiple submitters, single - Classified
by single submitter, not - Not classified by submitter, exp - Reviewed by expert
panel, prof - Reviewed by professional society; Keyed by CLNREVSTAT in
ClinVar VCF file.

Keys in ClinVar VCF file that will be useful for assigning ClinVar info later:

• CLNALLE (integer): Variant alleles from REF or ALT columns. 0 is REF, 1 is the first ALT allele, etc. This is
used to match alleles with other corresponding clinical (CLN) INFO tags. A value of -1 indicates that no allele
was found to match a corresponding HGVS allele name.

Unused Keys:

• CLNORIGIN (string): Allele Origin. One or more of the following values may be added: 0 - unknown; 1 -
germline; 2 - somatic; 4 - inherited; 8 - paternal; 16 - maternal; 32 - de-novo; 64 - biparental; 128 - uniparental;
256 - not-tested; 512 - tested-inconclusive; 1073741824 - other

• CLNSRC (string): Variant Clinical Channels

• CLNSRCID (string): Variant Clinical Channel IDs

• CLNDSDBID (string): Variant disease database ID

10.1.3 Ideas from Biodata for Further Annotations

protocol VariantAnnotations {
enum Expression {UP, DOWN}

record Xref {
union { null, string } id;
union { null, string } src;

}

record Score {
union { null, double } score;
union { null, string } source;
union { null, string } description;

}

record ConsequenceTypeEntry {
union { null, string } soName;

68 Chapter 10. Sprite

Lightning Documentation, Release 0.1.0

union { null, string } soAccession;
}

record ExpressionValue {
union { null, string } experimentalFactor;
union { null, string } factorValue;
union { null, string } experimentId;
union { null, string } technologyPlatform;
Expression expression;
union { null, float } pvalue;

}

record ConsequenceType {
union { null, string } geneName;
union { null, string } ensemblGeneId;
union { null, string } ensemblTranscriptId;
union { null, string } strand;
union { null, string } biotype;
union { null, int } cDnaPosition;
union { null, int } cdsPosition;
union { null, int } aaPosition;
union { null, string } aaChange;
union { null, string } codon;
union { null, string } functionalDescription;
union { null, array<Score> } proteinSubstitutionScores;
union { null, array<ConsequenceTypeEntry> } soTerms;
union { null, array<ExpressionValue> } expressionValues;

}

record PopulationFrequency {
union { null, string } study;
union { null, string } pop;
union { null, string } superPop;
union { null, string } refAllele;
union { null, string } altAllele;
union { null, float } refAlleleFreq;
union { null, float } altAlleleFreq;
union { null, float } refHomGenotypeFreq;
union { null, float } hetGenotypeFreq;
union { null, float } altHomGenotypeFreq;

}

record CaddScore {
union { null, string } transcriptId;
union { null, float } cScore;
union { null, float } rawScore;

}

record VariantAnnotation {
union { null, string } chromosome;
union { null, int } start;
union { null, int } end;
union { null, string } reference;
union { null, string } alternate;
union { null, string } id;
union { null, array<Xref> } xrefs;
union { null, array<string> } hgvs;
union { null, array<ConsequenceType> } consequenceTypes;

10.1. Sprite Annotation Database 69

Lightning Documentation, Release 0.1.0

union { null, array<Score> } conservation;
union { null, array<PopulationFrequency> } populationFrequencies;
//union { null, array<CaddScore> } caddScore;
union { null, map<array<string>> } geneDrugInteraction;
union { null, map<string> } variantTraitAssociation;
union { null, map<string> } additionalAttributes;

}
}

protocol Variants {
enum VariantType {

SNP,
SNV,
MNP,
MNV,
INDEL,
SV,
CNV,
NO_VARIATION,
SYMBOLIC,
MIXED}

enum AllelesCode {
ALLELES_OK,
ALLELES_MISSING,
MULTIPLE_ALTERNATES,
HAPLOID
}

record VariantHardyWeinbergStats {
union { null, float } chi2;
union { null, float } pValue;
union { null, int } n;
union { null, int } n_AA_11;
union { null, int } n_Aa_10;
union { null, int } n_aa_00;
union { null, float } e_AA_11;
union { null, float } e_Aa_10;
union { null, float } e_aa_00;
union { null, float } p;
union { null, float } q;

}

record VariantStats {
union { null, string } refAllele;
union { null, string } altAllele;
union { null, int } refAlleleCount;
union { null, int } altAlleleCount;
union { null, int } missingAlleles;
union { null, int } missingGenotypes;
union { null, float } refAlleleFreq;
union { null, float } altAlleleFreq;
union { null, float } maf;
union { null, float } mgf;
union { null, string } mafAllele;
union { null, string } mgfGenotype;
union { null, boolean } passedFilters;
union { null, int } mendelianErrors;

70 Chapter 10. Sprite

Lightning Documentation, Release 0.1.0

union { null, float } casesPercentDominant;
union { null, float } controlsPercentDominant;
union { null, float } casesPercentRecessive;
union { null, float } controlsPercentRecessive;
union { null, float } quality;
union { null, int } numSamples;
VariantType variantType;
VariantHardyWeinbergStats hw;

}

record VariantSourceEntry {
union { null, string } studyId;
union { null, string } fileId;
union { null, array<string> } secondaryAlternates = null;
string format;
//map<map<string>> samplesData;
array<array<string>> samplesData;
map<VariantStats> stats;
map<string> attributes;

}

record Genotype {
string reference;
string alternate;
array<int> allelesIdx =[];
boolean phased;

}

record Variant {
string chromosome;
int start;
int end;
string reference;
string alternate;
array<string> ids = [];
int length;
VariantType type;
map<array<string>> hgvs;
array<VariantSourceEntry> studies;
union {null, VariantAnnotation} annotation;

}

record VariantFileMetadata {
string fileId;
string studyId;
union { null, string } fileName = null;
union { null, string } studyName = null;
array<string> samples = [];
map<string> metadata;

}
}

Note: Please keep in mind Lightning is under development, as is its documentation. Feel free to file bugs or docu-
mentation errors at https://dev.arvados.org/projects/lightning.

Todo

10.1. Sprite Annotation Database 71

https://dev.arvados.org/projects/lightning

Lightning Documentation, Release 0.1.0

Make sure https://dev.arvados.org/projects/lightning is public and a well-behaved redmine account.

For an introduction, basic information about using Lightning, and Lightning’s design document, see Getting started.

For a description of the process of tiling (the abstraction of genomic sequences that makes Lightning possible) and the
functions and pipelines we provide for tiling genomes, see Tiling Overview.

For a description of our representation of tiled genomes (Compact Genome Format), see Compact Genome File (CGF)
Format.

For a description of our in-memory database for tiled genomes (Lantern), including the REST API it supports, see
Lantern Specifications.

For a description of our in-memory database for tile variants (the tile library), see Tile Library.

For a description of Annotile, the way we support annotations of tile variants, how to import annotation software, and
how to add human-generated annotations, see Annotile: Annotating Tile Variants.

For a description of Lightning Data Structures, used for interaction with the Lightning APIs, see Data Structures
Specifications.

For a description of Lightning APIs, see Lightning API Specifications.

For a description of Lightning Software Development Kits, see Software Development Kits.

Finally, for a description of the web browser application that runs on Lightning (Sprite), see Sprite.

72 Chapter 10. Sprite

https://dev.arvados.org/projects/lightning

CHAPTER

ELEVEN

INDICES AND TABLES

• genindex

• modindex

• search

73

	Getting started
	Lightning at a Glance
	Importing a Genome
	Lightning Design Doc
	Installation

	Tiling Overview
	Compact Genome File (CGF) Format
	Lantern Specifications
	Tile Library
	Annotile: Annotating Tile Variants
	Adding an Annotation Pipeline to Annotile
	How does Annotile Work?
	Storing Annotation Details
	Future Annotile Functionality

	Data Structures Specifications
	Data Structures Specifications, v0.1.0
	Data Structures Specifications, v0.1.1

	Lightning API Specifications
	Lightning v0.1.0 API Specifications
	Reasoning Behind the API
	Lightning Errors
	Lightning v0.1.1 API Specifications
	Batch Processing
	Versioning
	Paging

	Software Development Kits
	Sprite
	Sprite Annotation Database

	Indices and tables

